

The Danish Tax Authority

Requirements and guidelines for
implementing digital signatures in
Digital Cash Register Systems

Revision released March 2024

1

Contents

1 Introduction ... 2

1.1 The main principles ... 2

1.2 Legal basis for the signature ... 3

1.3 Cryptography .. 3

1.4 Digital signature .. 3

1.5 Acquiring the RSA keypair through OCES CA .. 3

1.5.1 OCES CA certificate policy .. 3

1.5.2 Integration of the OCES certificate for signing purposes ... 4

2 Technical requirements ... 4

2.1 General requirements ... 4

2.2 Example signature trail ... 4

2.3 Transactions to include in signature trail ... 5

2.4 2.2 RSA-SHA512-3072 ... 6

2.4.1 General description of RSA and SHA as a paired standard. .. 6

2.4.2 Implementation for ECR/POS software of RSA: ... 6

2.4.3 Certificate requisition ... 7

2.4.4 Technical requirements ... 7

2.4.5 Practical example ... 9

2.4.6 Practical Python code example for signing. ... 12

2.4.7 Practical C code example for signing. .. 12

2.4.8 Practical PHP code example for signing. .. 13

3 Key Generation and Management ... 13

3.1 Responsibility of software vendor .. 13

3.2 Distribution ... 13

3.3 Storage .. 13

3.4 Accountability ... 14

3.5 Compromising of key to third party .. 14

4 Resources ... 14

2

1 Introduction

To achieve compliance with the Danish Cash Register Act and Regulations pursuant to the Act

all digital cash register systems are required to implement a digital signature.

The signature shall sign specific data from each receipt and be recorded in the electronic journal

upon finalization of each transaction. It is also mandatory to export the signature to the SAF-T Cash

Register XML.

For the creation of the signature, the system vendors need to use the following standard:

• A digital signature using an RSA 3072 bit key with a SHA512 hash function (RSA-SHA512 3072)

RSA-SHA512-3072 is the only variant accepted by the Danish Tax Authority and is the minimum

standard utilized in OCES certificate standard (see section 4 ‘OCES Certificate Policy’). The public key

corresponding to the private key, which is used to digitally sign the transaction data, must be

provided as part of the certificate.

This document explains the basic principles o and provides a step-by-step guide to implementing

RSA-SHA512-3072 via OCES.

1.1 The main principles

The figure presents an overview of the process of signing data with a chaining element:

Data from receipt is defined in section 2. The signing of data is done using RSA-SHA512-3072 which

return the signatures.

The use of signatures from the previous receipt ensures a chain of signed data that should not be

3

broken. This must be done in the same ECR or Point of sale (POS) or other logical representation of

the point of sale (i.e. registerID etc.).

The signing process MUST be done during the completion of a transaction, not by batch processing

etc.

1.2 Legal basis for the signature

With reference to:

Regulations «BEK nr 2246 af 30/11/2021» relating to requirements for digital cash register

systems (the Cash Register Act) - §63 stk. 1Digital sales registration systems.

«Alle handlinger via salgsregistreringssystemer skal registreres i systemets elektroniske journal (logges).
Transaktionsdata i den elektroniske journal skal signeres digitalt med et dansk OCES-certifikat, udstedt til
den erhvervsdrivende eller dennes leverandør af digitalt salgsregistreringssystem, så integriteten af data
i den elektroniske journal kan verificeres i forbindelse med kontrol.»

With the signature, any alteration of the signed data without use of the private key of the

businessowner/software vendor is made detectable. This adds a strong integrity measure to the

electronic journal.

1.3 Cryptography

By requiring the use of RSA-SHA512-3072 digital signature one is utilizing the strength of asymmetric
cryptography, also called public key cryptography.

Asymmetric cryptography is a cryptographic system that uses two related keys, a key pair: private

key and public key. Any message that is encrypted by using the private key can only be decrypted

using the matching public key. The public key is made freely available to anyone, while a second,

private key is kept secret and only known to the vendor.

The advantage to asymmetric cryptography is that it eliminates the issue of exchanging keys over

the Internet or large network while preventing them from falling into the wrong hands.

1.4 Digital signature
Digital signatures are based on asymmetric cryptography. Using a public key algorithm such as RSA,

two keys that are mathematically linked are generated: one private and one public. The keys

should always originate from the OCES certificate issued to the business owner/system supplier. To

generate a digital signature, signing software creates a one-way hash (such as SHA 512) of the

electronic data to be signed. The private key is then used to encrypt the hash. The encrypted hash

is the digital signature. Digital signature provides integrity, authentication, and non-repudiation.

1.5 Acquiring the RSA keypair through OCES CA

1.5.1 OCES CA certificate policy
Generating the keys used in the RSA digital signing is a process carried out through the

acquisition of the OCES certificate. The Danish Agency for Digital Government outlines the

regulations that the supplier of such certificates must always adhere to.

4

1.5.2 Integration of the OCES certificate for signing purposes
The digital signature must be based on the Danish OCES3 standard. It is important to note, that this is a
change from the current OCES2 standard, which will be deprecated, and all certificates will be made
invalid 31st of October 2023, why all solutions must be migrated to OCES3. The certificate should
identify either the company using the cash register or the company providing the cash register service or
facility. Therefore, a so called “Virksomhedscertifikat” (Company certificate) is to be used. In OCES3
terms this is the VOCES certificate.

The full OCES3 certificate (without privateKey) is to be provided in a PEM X.509 version within the
<certificateData> element. This means that indicators “-----BEGIN CERTIFICATE-----" & “-----END
CERTIFICATE-----" are expected and should be included.

Details of the OCES3 certificate can be found at Certifikater - MitID Erhverv (mitid-erhverv.dk)

An example on OCES3 certificate can be located here: https://www.ca1.gov.dk/certifikater/

2 Technical requirements

This section addresses the technical requirements for implementing RSA-SHA512-3072 signing of the
individual transactions via OCES.

2.1 General requirements
1. The signature must be recorded in the electronic journal with a direct link to the full record

of the original receipt.

2. The signature must be created for all transactions that are reported in cashtransaction

(6.1 in Technical Description 1.3) in addition to the CVR number of the company. This

includes all receipts that are given a transaction number, and normally comprises

transactions that influence sales. Please see section 2.1.2 for further clarification of what

types of transactions this includes.

3. It must be recorded which version of the private or secret key that was used to generate the

signature of the receipt.

4. The format for creating the hash and signature must be identical to the data exported to the

Cash Register XML format and is stated in section 2.2.4 (RSA. The data elements must be

separated by “;” (semicolon). Further, the currency must be the same as stated on the

receipt.

5. The signature must be created and recorded in the electronic journal in parallel with

finalizing the transaction. Not by batch processing.

6. The signature from previous receipt must be derived from the signature value from the last

receipt for the same company in the same cash register. See example in section 2.1.1.

7. When the previous receipt does not have a signature, for example after a fresh install, the

signature value must be set to “0” – number zero.

8. When exporting from the electronic journal to Cash Register XML the signature shall be

recorded in the field ‘signature’ and the key version in the field ‘keyVersion’. The OCES

certificate is stored in the ‘certificateData’ element. All three elements are located at

company/location/cashregister/cashtransaction.

2.2 Example signature trail
The signature trail must follow the structure of the SAF-T Cash Register XML. This means that the
signature for a receipt must have the data from that receipt included, as well as the signature from
the previous receipt (receipt number) for the same company in the same cash register.

https://urldefense.com/v3/__https:/www.mitid-erhverv.dk/avanceret/certifikater/__;!!E1R1dd1bLLODlQ4!D7Y3xWUWMiOxfbiWwjxBTOP89wq4ud432O5Fxb9pmTkhf-DiqJmPieS4ZtBDCZXHPiX4nESy7mi1Ihh8gRw4je7t$
https://www.ca1.gov.dk/certifikater/

5

When exporting to the XML datafile the receipts must be in the same order as shown below. This is
to make it possible to verify the signature trail.

Company

o Location1
• CashRegisterX

• Transaction1X1
• Signatur1X1

• Transaction1X2
• Signature1X2 (from Signature1X1)

• Transaction1X3
• Signature1X3 (from Signature1X2)

• CashRegisterY
• Transaction 1Y1

• Signature1Y1
• Transaction1Y2

• Signature1Y2 (from Signature1Y1)
• Transaction1Y3

• Signature1Y3 (from Signature1Y2)

o Location2

• CashRegisterX
• Transaction2X1

• Signature2X1
• Transaction2X2

• Signature2X2 (from Signature2X1)
• Transaction2X3

• Signature2X3 (from Signature2X2)

2.3 Transactions to include in signature trail
As the signature trail must follow the structure of the SAF-T Cash Register XML, all transactions that

are exported to auditfile/company/location/cashregister/cashtransaction must be given a

signature. They must therefore always be included in the signature trail. Due to this fact, the

elements signature, certificateData and keyVersion are mandatory.

Normally the transactions reported in the cashtransaction relates to sales, both through

increasing and decreasing the sales amount. However, depending on the preferences of the

system vendor, also other additional transactions (transaction types) may be included in the

signature trail.

If for example “Opening of cash drawer” is also treated as a transaction by the system, and used

for generation of signature and written as a transaction in the XML export (in <cashtransaction>)

this must in addition be reported as an event in the XML with a reference to the transaction ID

<transID>.

All fields required to create the signature are mandatory, and they must all be included in the

cashtransactions along with the mandatory elements.

When different types of transactions are used, <transType> is to be filled out to distinguish the

6

different transaction types.

The elements <transAmntIn> and <transAmntEx> must be filled with value “0.00” when there is

no amount. These elements cannot be left empty or excluded.

2.4 2.2 RSA-SHA512-3072

2.4.1 General description of RSA and SHA as a paired standard.
When RSA and SHA-512 are combined, RSA is used for the digital signing process, while SHA-512 is

used for generating a hash of the data being signed. In practice the sender first applies a hash

function to the transaction data to create a message digest. The sender then encrypts the message

digest with the sender's private key (supplied through OCES) to create the sender's personal

signature.

Upon receiving the message and signature, the receiver decrypts the signature using the sender's

public key (derived from the XML-element <certificateData>) to recover the message digest and

hashes the message using the same hash algorithm that the sender used.

If the message digest that the receiver computes match the message digest received from the

sender, the receiver can assume that the message was not altered while in transit. Note that anyone

can verify a signature because the sender's public key is common knowledge. This technique does

not retain the secrecy of the message; for the message to be secret, it must also be encrypted.

2.4.2 Implementation for ECR/POS software of RSA:

During audits the Tax Authorities will regenerate the hash and compare it with the hash derived

from the signature stored in the electronic journal by using the public key obtained through the

relevant certificate. The RSA signature must be generated and stored in the electronic journal

upon each completion of the sale.

The Tax Authorities generates the hash by using the defined data values stored in the electronic

journal. A match indicates that the data has not been altered by a third party without knowledge to

the private key.

The process of signing and verification is illustrated in the image below:

7

2.4.3 Certificate requisition
The Digital Cash Register Act demands that the signed transactions are done using the keys validated and
delivered in the OCES certificate acquisition process (see 1.5 Acquiring the RSA keypair through OCES CA).
The certificate will provide information about the responsible signee and, among other data, contain the
public key used in the RSA signature. The OCES CA will host the necessary information to validate the
certificate, which can be requisitioned by the Danish Tax Authority on demand.

2.4.4 Technical requirements
IMPORTANT NOTE: The process of verifying the signature will not be possible if the technical

requirements are not met. This is because the recalculation of the SHA hash must be done with the

exact same values as done with the signing process.

When using the RSA algorithm (data encryption algorithm using the asymmetric key system, public

and private key), the following guidelines (in addition to general requirements) must be applied:

1. The systems vendor is not allowed to use any other keypair than the ones validated by

the OCES CA through the certification installation process (see Certificate Policy in

Ressource section below for further information).

2. The public key must result from an extraction from the private key in PEM format (base-64).

3. The systems vendor must ensure that the private key used to create the signature is their

unique knowledge and is properly protected in the software environment. See Key

8

Management for further guidelines.

The following table describes what data to be signed and their order (see also section 6.1
cashtransaction in Technical_description_Danish SAF-T format for Cash Register data):

Table 1: Mandatory transaction data

Element in
SAF-T Cash

Register

Description of element Format and
requirements

Examples

signature Signature from previous receipt Base-64
If no previous receipt the
signature value must be set
to “0” – number zero

signature_from
_previo
us_receipt

nr Transaction number. This must
be a unique, sequential number
within a journal.

This will be the same as
the number stated on the
issued receipt

IdentificationString36 123456789

transID Transaction ID. Other unique
internal, sequential ID used
by the cash register system.
This can be the equivalent of
the element “nr”.

IdentificationString36 11334455

transType Transaction type.
Description of the code
MUST be declared in the
‘Basics’ table (basicType
11). See technical
description section 3.20.

IdentificationString36 CASHSAL

transDate Date at which the transaction
was performed.

YYYY-MM-DD

Do NOT use time zone or
combined date and time
format.

2014-01-24
2015-10-29

transTime Time at which the transaction
was performed.

hh:mm:ss

Use ss=00 as default value if
no information of seconds
are available.
Same as within the SAF-T
export.

Do NOT use time zone or
combined date and time
format.

23:59:59

9

empID Unique identification of the
employee who has performed
the transaction (refers to the
empID of the employee
element).
See section: 3.15 in technical
description.

IdentificationString36 1003

transAmntIn The amount involved in the
transaction, including VAT.

Decimal Data Type:

Numerical field with two
decimals.
Decimal separator “.”
(dot).
No thousand separators.
No leading or ending
spaces.

1250.00

transAmntEx The amount involved in the
transaction, excluding VAT.

Decimal Data Type:
Numerical field with two
decimals.
Decimal separator “.”
(dot).
No thousand separators.
No leading or ending
spaces.

1000.00

registerID Unique id of the register. Identical
to registerID in section 4.3 in
technical description.

String100 123.45678-A

companyIdent The company’s danish 8-digit CVR
number. This must be identical to
the number provided in section
3.1 «company\companyIdent»

No leading or ending spaces 12345678

2.4.5 Practical example
All code examples are written and tested with OpenSSL and Cryptography in Python. We recommend

using the PKCS1v15 padding as this has proven to work more consistently across different code formats,
but do accept PSS padding as well.

Signing of data:

1. Data to be signed:

Signatur_from_previous_receipt;transaction_data (see table 1)

Example:
apkUomoTd3dBJZ7EShaPAJd5kwPJ+zFGKkip6i8Vr5bp/9l7tQieCr0/Dlfm5sTI0+0b9qbXqcVWP+ts6P+XulTpVCxBsyw
O4ElycZ7XdEWSDYfwoGCXvXwsllsZKHk1a1FxzHb2CPGD44/8ETbYkIh8vJ0INckp3PoiL5N+Ljm6wBuN8qJ6ZSO8DhMJ
CUUUIjrUQnza/oTtdGgMQ1nD/YFLX4oXYkcWbynGQYnvfIUKS57PsMNSTW11XvdITPQbbm+DjP51TsatrRY799t+ozO
icqhLH44Z6s3UQgjWKT05cFtNYkwHmbEovu1o7DXQB1v7/JPHUPicneHKhmtaDreFFTHWFjqwOJSZ/6xT40BBt+UUV
e4RL6fkhxpFNKoHC5urVtpYHopsBNIGSQms+BkSg9Mb2CsCNLvkJkbEWKCTCfigD7kijkSy0d7qzUNiJ/W+XiLftkFdabXe
7mVuSq97XDwl57pyco4YehpVtvv2fgrZGir7qw88eJukTDch;123456789;11334455;CASHSAL;2014-01-
24;23:59:59;1003;1250.00;1000.00;123.45678-A;12345678

10

2. Hash data with SHA512 (this will return data in bytes):

message_sha512 = hashlib.sha512(bytes(message, 'utf-8')).digest()

3. Encrypt the byte value with private key and generate “signature_inbyte”:
4. Signature_inbyte = private_key.sign(message_to_sign_sha512,

 padding.PKCS1v15(),

 hashes.SHA512())

5. Encode with base64string and generate “signature”:
6. signature = base64.b64encode(signature_inbyte).decode('utf-8')

Example signatur:
MT+qKDAh2wg1zk2uTtBriIkTHDgPhG5PvEjcWuo65Uu28bO7WKUUBmbGLzUvhiEAMVGZl1FyR2eIKDwP
Gc99hqvfzHFczQhCrRvlO020WMfO9FltU5qICzay9y40Riqn9ee3Bqq6FCiUwDyqdd0bfz8AQYFxFK0a+sWD
F7FfbEG0aXTbILIT1Olq+JOi613vwTsz69bj4vjtraD5Kl2CTcfbCYYv02FZHjwAvgBBqHS3jU3OWcvDCw46xv7
dY1DPDgPUbb9p/zF3NArcnSP9Cwjs2T/ri6o41s1Z4L9CGd//abaDpBARcxgfHk9VcrKTvNo19roXDxPn7Ham
iQ9fXqNuF3t0x5b7xX1Y3DIXqYz6c8HfaoH22kVHpgJgAJjADqBHTgArOxSV+kUBL2+uZ8baRJ/NM37+QzB8
A7JuFMYYVp/4TrdYZxswCG8Drgfk+rlLwbSfYjt6jahuOLQOZZLosRmN3RLiakvGbCmlVecbp/2RJOSVFgcTY+
Q7xw3e

How to verify the signature:

Mock certificate data for testing:

Certificate format: x.509 PEM

11

-----BEGIN CERTIFICATE-----
MIIGiTCCBL2gAwIBAgIUKjnFzNdu5RItpr+EpFJIh7k2hEowQQYJKoZIhvcNAQEK
MDSgDzANBglghkgBZQMEAgEFAKEcMBoGCSqGSIb3DQEBCDANBglghkgBZQMEAgEF
AKIDAgEgMGsxLTArBgNVBAMMJERlbiBEYW5za2UgU3RhdCBPQ0VTIHVkc3RlZGVu
ZGUtQ0EgMTETMBEGA1UECwwKVGVzdCAtIGN0aTEYMBYGA1UECgwPRGVuIERhbnNr
ZSBTdGF0MQswCQYDVQQGEwJESzAeFw0yMzA5MjAwOTM0MTRaFw0yNjA5MTkwOTM0
MTNaMIGfMRYwFAYDVQQDDA1TVElMLUlQTC1URVNUMTcwNQYDVQQFEy5VSTpESy1P
Okc6ZTVlYmMzN2EtNWFjNC00MDJjLTk1NzgtNzY3Y2IzZDk3ODU4MSYwJAYDVQQK
DB1UZXN0b3JnYW5pc2F0aW9uIG5yLiA5MzM3NzE2MzEXMBUGA1UEYQwOTlRSREst
OTMzNzcxNjMxCzAJBgNVBAYTAkRLMIIBojANBgkqhkiG9w0BAQEFAAOCAY8AMIIB
igKCAYEAoh/HN0u+6XmFvtcGY5lo4BGefzbPtlbhPrqXTC98R+vHhBJLx4GdKyOu
HMoE5S5bEXEqa8ZYKP/0SF+fIL0ZeprNvMYOil9Xb01Y9V/BbVCcVImCVNdszqMx
Qh0QBoFKrLT100hZUNLf4go46Lzg2mRw2g4jJbTM3uC29vfiD/hzu79WRijyU21Q
aB8Y3QLyBwL6z0uyy5KDgzGtilQPLFpfDbcucGrUotkwiycViUfaUEdd5PQUeAmQ
51Py+wHcQlHEMYPpCmCy9nCUUdHDFwp+yToqtMeX0RUQu3baJ2tqz4Ub6DtRR9rl
2nR8iOb1Gmo6YaVrogbX1uGAEquuDHpAE2TG0xtdUGnSV/x9A6p/AkTZA2tTajTV
6bjGM8K22oGQmAnPgEwph+l9Bl/ICTLovMG9oO1JEo5UUzxyomL9Yb1ANeVpRw/W
NTIxVEj1Wd4DTpg7HHChsmrCzaevnRYT4ThXRXzl05ms6RfRyqVDz06xJVXaV+ed
edjwvvXtAgMBAAGjggGGMIIBgjAMBgNVHRMBAf8EAjAAMB8GA1UdIwQYMBaAFH8o
n9lxmULidefXNXYuTQglbXZeMHsGCCsGAQUFBwEBBG8wbTBDBggrBgEFBQcwAoY3
aHR0cDovL2NhMS5jdGktZ292LmRrL29jZXMvaXNzdWluZy8xL2NhY2VydC9pc3N1
aW5nLmNlcjAmBggrBgEFBQcwAYYaaHR0cDovL2NhMS5jdGktZ292LmRrL29jc3Aw
IQYDVR0gBBowGDAIBgYEAI96AQEwDAYKKoFQgSkBAQEDBzA7BggrBgEFBQcBAwQv
MC0wKwYIKwYBBQUHCwIwHwYHBACL7EkBAjAUhhJodHRwczovL3VpZC5nb3YuZGsw
RQYDVR0fBD4wPDA6oDigNoY0aHR0cDovL2NhMS5jdGktZ292LmRrL29jZXMvaXNz
dWluZy8xL2NybC9pc3N1aW5nLmNybDAdBgNVHQ4EFgQUD6pFevOBC/FSoRzZnyjB
6cV3wikwDgYDVR0PAQH/BAQDAgWgMEEGCSqGSIb3DQEBCjA0oA8wDQYJYIZIAWUD
BAIBBQChHDAaBgkqhkiG9w0BAQgwDQYJYIZIAWUDBAIBBQCiAwIBIAOCAYEACmuR
Xivhc2m3CAWJC01LJAW+CmbNPXbcq3ovTTuqpvp/6/2YyP9xu9VeerUl34Wndl+j
naaXTHxrszWQO+1TEvN/ph6dXu7too0NwVt+wunL8+PCBOULR8Z2L9fSChyExPql
o4LheixLfRFnES67KT2Ny2OvtRpHqVUDF3qwzpra08j2yVEbbhdv1sQ0Sp9pNyez
fpSZzYY216qDj0M5rZMdjeP65rzi8h3wWUQqJcscJuxhvtR+RdHD0VX3X2qV/Zvb
tF7CvaqAJsARNBlRr7kcHrhmdI7MFP6/JQ11zEXYhgiNnuMv4kQKNPknq5NHDn1d
YjittCqAyGKlSIPrLhzJ2hnS+ieVxhKLSaxBHxyJRYkgvySYe/ijr+35XzzW8Jie
AR5IYCt48WiqoJk7AviERie+XwaR0Mc8QRk7kal/6yR34Qaqv8IokeKjzCF84Bh9
F/qx1nePVClxVADF4sLR31V+bfQaq++RCn9BE3/YgWCdYgUusoFft5nZv/Ui
-----END CERTIFICATE-----

7. Generate hash with SHA512 with same unsigned data as in step 1 “data to be signed” and step 2

“Hash data with SHA512”

Example (same as step 2):
Message_sha512=
b'5#\xac\x8e\xbe\x11\xfc\x9e\x87\xc0\x1e\xe3V:\xbbI\xe6\x0b\x1d\xd8^T\r\xbc\xf3\xe8_?C_HT\xc6\x88\x92\x9a
\xc3\xddB\x96\xfb\xb1\xec\x7f\x8f.\xc7W_\xe2\xd3k[mK\xcff\x80\xf4\x84\x93?\xa4='

8. Use public key on signed data to verify hash:
 public_key.verify(

 signature,

 message_to_sign_sha512,

 padding.PKCS1v15(),

 hashes.SHA512()

)

12

9. The hash values are the same and the data integrity is confirmed.

2.4.6 Practical Python code example for signing.

2 """Read certificate, private and public key from a pfx file"""

with open(pfx_path, 'rb') as f:

 pfx_data = f.read()

pfx = OpenSSL.crypto.load_pkcs12(pfx_data, pfx_password)

private_key = serialization.load_pem_private_key(

 OpenSSL.crypto.dump_privatekey(OpenSSL.crypto.FILETYPE_PEM,

pfx.get_privatekey()), password=None,

 backend=default_backend())

certificate = x509.load_pem_x509_certificate(

 OpenSSL.crypto.dump_certificate(OpenSSL.crypto.FILETYPE_PEM,

pfx.get_certificate()), default_backend())

public_key = certificate.public_key()

"""The message that needs to be signed"""

message_to_sign = '0;123456789;11334455;CASHSAL;2023-10-

21;04:22:29;1003;1250.00;1000.00;123.45678-A;123456789'

"""Generate SHA512"""

message_to_sign_sha512 = hashlib.sha512(bytes(message_to_sign, 'utf-

8')).digest()

"""Sign it with private key"""

signature = private_key.sign(message_to_sign_sha512,

 padding.PKCS1v15(),

 hashes.SHA512())

"""Verify with public key"""

try:

 public_key.verify(

 signature,

 message_to_sign_sha512,

 padding.PKCS1v15(),

 hashes.SHA512()

)

 print('valid!')

except cryptography.exceptions.InvalidSignature:

 print('invalid!')

2.4.7 Practical C code example for signing.
//Initialize the SHA-512 Context

SHA512_CTX ctx;

SHA512_Init(&ctx);

//Update Has Context with Data

SHA512_Update(&ctx, buffer, bytes); // 'buffer' contains the previous signature or

"0" for the first transaction.

SHA512_Update(&ctx, plainText, strlen(plainText)); // 'plainText' contains the

data to sign.

//Finalize the Hash

13

unsigned char digest[SHA512_DIGEST_LENGTH];

SHA512_Final(digest, &ctx);

//Sign the digest with RSA

int result = RSA_sign(NID_sha512, digest, SHA512_DIGEST_LENGTH, buffer, &bytes,

rsa_privkey);

//Encode the Signature in Base64

char* base64EncodeOutput;

int len = Base64Encode(buffer, bytes, &base64EncodeOutput); //

'base64EncodeOutput' will contain the base64-encoded signature.

2.4.8 Practical PHP code example for signing.
openssl_sign($message, $signature, $privateKeyResource, OPENSSL_ALGO_SHA512);

3 Key Generation and Management
The objective of key management is to achieve a situation in which the private key or secret key

cannot be revealed or abused. Therefore, great responsibility rests with the software vendors to

protect these keys.

This section presents guidelines and best practices for key generation and management.

3.1 Responsibility of software vendor
The software vendor must do a risk assessment based on the circumstances they are facing in the

following:

- Protection of private/secret key used by the ECR/POS software available to their customers.

- Protection of private/secret key within the software vendor company premises.

The conclusions and actions taken must be documented and act as the basis for the management

of secret key(s).

The consequence of private/secret keys being compromised is that the software vendor must

contact the relevant CA responsible for managing the certificate to which the keypair was

generated for.

3.2 Distribution

The generated keys shall be transported (when necessary) using secure channels. The distribution of

the public key (asymmetric encryption using RSA) to the Danish Tax Authority is done utilizing the

OCES CA key distribution solution.

Sharing of secret keys with other parties must not be done, unless stated by an industry agreement

with the participation of the Danish Tax Authority. It is however permitted for the business owner

to use the system suppliers certified keypair for the signing process. Insofar such a transaction of

keys is performed internally within the system supplier or between the system supplier and the

customer (business owner), it must be carried out adhering to the OCES CA rules and regulations.

3.3 Storage

The basis of key management is to ensure that the keys are stored in a secure manner. What

14

constitutes a secure manner depends on how the environment for each cash register system is

structured.

Regardless of the environment and whether the key is stored internally or externally, the following

general protective measures should be considered:

• Developers must understand where cryptographic keys are stored within the application.

Understand what memory devices the keys are stored on.

• Limit the amount of time the key is held in plaintext form, for example in volatile memory.

• Keys should never be stored in plaintext format, and humans prevented from viewing it in

plaintext.

• Keys should be protected on both volatile and persistent memory, ideally processed within

secure cryptographic modules.

• Keys should be stored so that no other than the privileged persons get access to it in

plaintext form.

3.4 Accountability

Accountability involves the identification of those that have access to, or control of, cryptographic

keys throughout their lifecycles. This can be an effective tool to help prevent key compromises and

to reduce the impact of compromises once they are detected. Although it is preferred that no

humans are able to view keys, as a minimum, the key management system should account for all

individuals who are able to view plaintext cryptographic keys.

In addition, more sophisticated key-management systems may account for all individuals authorized

to access or control any cryptographic keys, whether in plaintext or cipher text form.

3.5 Compromising of key to third party

If a key is compromised, the cash register system no longer fulfils the requirements in the Cash

Register Systems Regulations. The supplier must, without undue delay, notify the CA of the OCES

certificate from which the keypair is generated, of this and rectify the deficiency or withdraw the

cash register system from the market, refer the certificate policy of the Danish Agency for Digital

Government (see section “4 Resources”).

4 Resources

OCES-standarden – Digitaliseringsstyrelsen (Agency for Digital Government)

https://digst.dk/it-loesninger/nemid/om-loesningen/oces-standarden/

NETS Certificate Policy for OCES-Virksomhedscertifikater (v.5)

https://www.nemid.nu/dk-da/om-nemid/historien_om_nemid/oces-standarden/oces-
certifikatpolitikker/VOCES_Certifikatpolitik_v5.pdf

Agency for Digital Government - Certificate Policy
VOCES Certifikatpolitik V4 0 sep 09 Eng.doc (digst.dk)

https://digst.dk/it-loesninger/nemid/om-loesningen/oces-standarden/
https://www.nemid.nu/dk-da/om-nemid/historien_om_nemid/oces-standarden/oces-certifikatpolitikker/VOCES_Certifikatpolitik_v5.pdf
https://www.nemid.nu/dk-da/om-nemid/historien_om_nemid/oces-standarden/oces-certifikatpolitikker/VOCES_Certifikatpolitik_v5.pdf
https://digst.dk/media/19823/voces_certifikatpolitik_version_4_eng.pdf

