si» UDVIKLINGS OG
FORENKLINGS

anish Tax

Authority

Requirements and
guidelines for

imp

sigr

ementing digital
atures in Digital Cash

Register Systems

Revision released June 2024

T oY oo To [ot o [e Y o TP PR 2

0 O o Tl = 1T oY o Tl T o] LSS PRROt 2
1.2 Legal basis fOr the SIGNAtUIE c......cii it e e e e rte e e s ate e e e e ata e e e sntaee e snraeeesanes 3
I O Y o] oY ={ -1] 1Y/ SRRSOt 3
1.4 DIgital SIBNATUIE .oeeeiiiee ettt e et e e e et e e e e et te e e e ebteeeeebteeeeeasteeeesstaeeesstaeeesnsranesanes 3
1.5 Acquiring the RSA keypair through OCES CAcooouiiiiiiiiie ettt et e e s sire e e s satee e s snraeeesanes 3
1.5.1 OCES CA Certificate POLICY .occuviieeeiiiie ettt e et e e e et e e e e et e e e e e eabae e e ennaeeeeeenneeas 3
1.5.2 Integration of the OCES certificate for Signing PUrPOSES......c.uviviiiiiieiiiiiee e 4

P =Yoo Yo T Tor | =T o [UT = o =T o} 3PP PPR 4
P Gl T=Y o | I = To [T =T 0 =T oL PSR 4
2.2 EXample SIZNATUIE Lrail ..cccvviiiieieie e e e e e et e e et e e e e b e e e e naaeeeean 4
2.3 Transactions to include in SIgNAtUre trailcccviiiiiiiieiice e e e sree e 5
2.8 RSA-SHASTL2-3072 ...ttt ettt ettt ettt ettt e b e s bt e she e sat e et e et e e sbeesbeesaeesateeabe e be e bt e bt e eneeenteeareenrean 6
2.4.1 General description of RSA and SHA-512 as a paired standard.........cccccccvevvieeiicciee e, 6
2.4.2 UsiNg SHA-512 fOr NaShiNg.......ccoiiiiiii ittt e e et e e e bae e e e ebte e e e earee e e eearaeas 6
2.4.3 Implementation for ECR/POS sOftware 0f RSA:......cccuiiiiiiiiieiieeee ettt ettt ee v v ene s 6
2.4.4 Certificate reqUISITIONviii e e e e s e e s e sabe e e e e snreeeeennreeas 7
2.4.5 TeChNiCal FEQUIFEIMENTS ...ooiiiiiee ettt et e e te e e e et e e e e e bt e e e e e bee e e eeabeeaeeenneeeeennseeas 7
P Sl - T [or= Y =) - [4 o L PP 9
2.4.7 Practical Python code example for SIZNINEG.ooiiciiiiiiciiie e et e e 12
2.4.8 Practical C code example for SIZNINEG.cueie ittt e et e e et e e e eaaaeeeeanes 12
2.4.9 Practical PHP code example for SINING.couciiiiiiiiiie ittt e e e e s ssvane e 13

3 Key Generation and ManagemMENt.......c.ueieiiciiiiiicieee ettt e st e e s s ate e e e sbteee s sbtaeessbtaeeesntaeeesnes 13
3.1 Responsibility of SOftWare VENAONooiiiiiei e 13
3.2 DISTIBULION ettt sttt et e b sae e st s e e e re e ne e eae e ne s 13
R I (o] =T - OO PP PPPPPPPPPPPPPPPPRE 13
Y olole YU T g -] o111 4V PRSP 14
3.5 Compromising of key 10 third Party ... ettt 14

4 Classic pitfalls regarding digital SIZNATUIE..........oii it e et e e e e araeeeas 14
4.1 Not utilizing the available signature script available on SKAT.dK.cccoooiiiiiiiiiieiieee s 14
4.2 ConsiSteNCY Of the SIGNATUIE:......c ettt e e et e e e et e e e e e eate e e e s araeeesnraeaaeanes 14
4.3 Wrong format in the CertifiCate ..o et e e e et e e e e earae e e enes 15
4.4 Wrong type OF COMITICAtE ...cciiiiee ettt e e et e e et e e e et e e e e ear e e e e snraeaaeanes 15

5 RESOUICES ...ttt ettt e st e s et e s e b e e e s e b e e e e s e b e e e e s e b e e e e s aarer e e s e ren e e s e renee s e nrneesnnee 16

1 Introduction

To achieve compliance with the Danish Cash Register Act and Regulations pursuant to the Act
all digital cash register systems are required to implement a digital signature.

The signature shall sign specific data from each receipt and be recorded in the electronic journal
upon finalization of each transaction. It is also mandatory to export the signature to the SAF-T Cash
Register XML.

For the creation of the signature, the system vendors need to use the following standard:
e Adigital signature using an RSA 3072 bit key with a SHA512 hash function (RSA-SHA512 3072)

RSA-SHA512-3072 is the only variant accepted by the Danish Tax Authority and is the minimum
standard utilized in OCES certificate standard (see section 4 ‘OCES Certificate Policy’). The public key
corresponding to the private key, which is used to digitally sign the transaction data, must be
provided as part of the certificate.

This document explains the basic principles o and provides a step-by-step guide to implementing
RSA-SHA512-3072 via OCES.

1.1 The main principles
The figure presents an overview of the process of signing data with a chaining element:

Transaction #1 Data from Signing Complete
transaction #1 process signature

Signature #1
L

Transaction #2 Data from Signing Complete
transaction #2 process signature

Signature #2
L

Transaction #3 Data from Signing Complete

'y

transaction #3 process signature

Data from receipt is defined in section 2. The signing of data is done using RSA-SHA512-3072 which
return the signatures.

The use of signatures from the previous receipt ensures a chain of signed data that should not be
broken. This must be done in the same ECR or Point of sale (POS) or other logical representation of
the point of sale (i.e. registerID etc.).

The signing process MUST be done during the completion of a transaction, not by batch processing
etc.

1.2 Legal basis for the signature
With reference to:

Regulations «BEK nr 1435 af 29/11/2023» relating to requirements for digital cash register

systems (the Cash Register Act) - §64 stk. 1 on digital sales registration systems:
«
Alle handlinger via salgsregistreringssystemer skal registreres i systemets elektroniske journal (log-
ges). Transaktionsdata i den elektroniske journal skal signeres digitalt med et OCES-certifikat, som
identificerer den erhvervsdrivende eller leverandgren af det digitale salgsregistreringssystem, sa
integriteten af data i den elektroniske journal kan verificeres i forbindelse med kontrol.

D

With the signature, any alteration of the signed data without use of the private key of the
businessowner/software vendor is made detectable. This adds a strong integrity measure to the
electronic journal.

1.3 Cryptography
By requiring the use of RSA-SHA512-3072 digital signature one is utilizing the strength of asymmetric
cryptography, also called public key cryptography.

Asymmetric cryptography is a cryptographic system that uses two related keys, a key pair: private
key and public key. Any message that is encrypted by using the private key can only be decrypted
using the matching public key. The public key is made freely available to anyone, while a second,
private key is kept secret and only known to the vendor.

The advantage to asymmetric cryptography is that it eliminates the issue of exchanging keys over
the Internet or large network while preventing them from falling into the wrong hands.

1.4 Digital signature
Digital signatures are based on asymmetric cryptography. Using a public key algorithm such as RSA,
two keys that are mathematically linked are generated: one private and one public. The keys
should always originate from the OCES certificate issued to the business owner/system supplier. To
generate a digital signature, signing software creates a one-way hash (such as SHA 512) of the
electronic data to be signed. The private key is then used to encrypt the hash. The encrypted hash
is the digital signature. Digital signature provides integrity, authentication, and non-repudiation.

1.5 Acquiring the RSA keypair through OCES CA

1.5.1 OCES CA certificate policy
Generating the keys used in the RSA digital signing is a process carried out through the
acquisition of the OCES certificate. The Danish Agency for Digital Government outlines the
regulations that the supplier of such certificates must always adhere to.

1.5.2 Integration of the OCES certificate for signing purposes
The digital signature must be based on the Danish OCES3 standard. It is important to note, that this is a
change from the current OCES2 standard, which will be deprecated, and all certificates was made invalid
31st of October 2023, why all solutions must be migrated to OCES3. The certificate shall identify either
the company using the cash register or the company providing the cash register service or facility.
Therefore, a so called “Organisationscertifikat” eller “virksomhedscertifikat” (Company certificate) is to
be used. In OCES3 terms this is the VOCES certificate.

The full OCES3 certificate (without privateKey) is to be provided in a PEM X.509 version within the
<certificateData> element. This means that indicators “-----BEGIN CERTIFICATE-----" & “-----END
CERTIFICATE-----" are expected and should be included.

Details of the OCES3 certificate can be found at Certifikater - MitID Erhverv (mitid-erhverv.dk)
An example on OCES3 certificate can be located here: https://www.cal.gov.dk/certifikater/

2 Technical requirements

This section addresses the technical requirements for implementing RSA-SHA512-3072 signing of the
individual transactions via OCES.

2.1 General requirements

1. The signature must be recorded in the electronic journal with a direct link to the full record
of the original receipt.

2. The signature must be created for all transactions that are reported in the XSD element
cashtransaction (6.1 in Technical Description 1.5.0) in addition to the CVR number
(Companyldent) of the company. This includes all receipts that are given a transaction
number, and normally comprises transactions that influence sales. Please see section 2.1.2
for further clarification of what types of transactions this includes.

3. It must be recorded which version of the private or secret key that was used to generate the
signature of the receipt.

4. The format for creating the hash and signature must be identical to the data exported to the
Cash Register XML format and is stated in section 2.2.4 (RSA. The data elements must be
separated by “;” (semicolon). Further, the currency must be the same as stated on the
receipt.

5. The signature must be created and recorded in the electronic journal when
finalizing the transaction. Not by batch processing.

6. The signature from previous receipt must be derived from the signature value from the last
receipt for the same company in the same cash register. See example in section 2.1.1.

7. When the previous receipt does not have a signature, for example after a fresh install, the
signature value must be set to “0” — number zero.

8. When exporting from the electronic journal to Cash Register XML the signature shall be
recorded in the field ‘signature’ and the key version in the field ‘keyVersion’. The OCES
certificate is stored in the ‘certificateData’ element. All three elements are located at
company/location/cashregister/cashtransaction.

2.2 Example signature trail
The signature trail must follow the structure of the SAF-T Cash Register XML. This means that the
signature for a receipt must have the data from that receipt included, as well as the signature from

the previous receipt (receipt number) for the same company in the same cash register. 4

https://urldefense.com/v3/__https:/www.mitid-erhverv.dk/avanceret/certifikater/__;!!E1R1dd1bLLODlQ4!D7Y3xWUWMiOxfbiWwjxBTOP89wq4ud432O5Fxb9pmTkhf-DiqJmPieS4ZtBDCZXHPiX4nESy7mi1Ihh8gRw4je7t$
https://www.ca1.gov.dk/certifikater/

When exporting to the XML datafile the receipts must be in the same order as shown below. This is
to make it possible to verify the signature trail.

Company
o Locationl
. CashRegisterX
. Transaction1X1
. SignaturlX1
. Transaction1X2
o SignaturelX2 (from Signature1X1)
. Transaction1X3
o SignaturelX3 (from Signature1X2)
o CashRegisterY
. Transaction 1Y1
. SignaturelY1l
. Transaction1Y2
o SignaturelY2 (from SignaturelY1)
. Transaction1Y3
o SignaturelY3 (from SignaturelY2)

o Location2

o CashRegisterX
. Transaction2X1
. Signature2X1
. Transaction2X2
o Signature2X2 (from Signature2X1)
. Transaction2X3
o Signature2X3 (from Signature2X2)

2.3 Transactions to include in signature trail
As the signature trail must follow the structure of the SAF-T Cash Register XML, all transactions that
are exported to auditfile/company/location/cashregister/cashtransaction must be given a
signature. They must therefore always be included in the signature trail. Due to this fact, the
elements signature, certificateData and keyVersion are mandatory.

Normally the transactions reported in the cashtransaction relates to sales, both through
increasing and decreasing the sales amount. However, depending on the preferences of the
system vendor, also other additional transactions (transaction types) may be included in the
signature trail.

If for example “Opening of cash drawer” is also treated as a transaction by the system, and used

for generation of signature and written as a transaction in the XML export (in <cashtransaction>)
this must in addition be reported as an “event” in the XML with a reference to the transaction ID
<transID>.

All fields required to create the signature are mandatory, and they must all be included in the
cashtransactions along with the mandatory elements.

When different types of transactions are used, <transType> is to be filled out to distinguish the

different transaction types (For example <TransType>CASHSAL</TransType>). The description of
the TransType must be declared in “basics” table (BasicType 11). Please see the Code list for a
table of PredefinedBasicIDs for BasicType 11.

The elements <transAmntIn> and <transAmntEx> must be filled with value “0.00” when there is
no amount. These elements cannot be left empty or excluded.

2.4 RSA-SHA512-3072

2.4.1 General description of RSA and SHA-512 as a paired standard.
To begin with, it is important to note that there is a difference between RSA encryption and RSA
signature. For all matters in the Digital signature in Digital Cash Registers you will need to use RSA
signature. It's important to note that while the underlying RSA algorithm is the same in both cases,
the code implementation details differ:

RSA encryption is used to secure data and allows only the intended recipient to decrypt and read
the data. This happens when the sender encrypts the data using the recipient's public key, which
only the recipient has the private key to decrypt. Only sender and recipient can read the message.

RSA signature, on the other hand, is used to verify the authenticity and integrity of data. This is the
intent of the digital signature for in digital cash registers, and it allows anyone to verify that the
sender of the data is who they claim to be, and that the data has not been tampered with since it
was signed. For RSA signature the sender generates a hash value (a message digest) of the data they
want to send and encrypts it using their private key. The recipient can then decrypt and verify the
signature (the hash value) using the sender's public key.

In summary, RSA encryption is used for confidentiality purposes, while RSA signature is used to
ensure authenticity and integrity of data.

2.4.2 Using SHA-512 for hashing
When RSA and SHA-512 are combined, RSA is used for the digital signing process, while SHA-512 is
used for generating a hash of the data being signed. In practice the sender first applies a hash
function to the transaction data to create a message digest. The sender then encrypts the message
digest with the sender's private key (supplied through OCES) to create the sender's personal
signature.

Upon receiving the message and signature, the receiver decrypts the signature using the sender's
public key (derived from the XML-element <certificateData>) to recover the message digest and
hashes the message using the same hash algorithm that the sender used.

If the message digest that the receiver computes match the message digest received from the
sender, the receiver can assume that the message was not altered while in transit. Note that anyone
can verify a signature because the sender's public key is common knowledge. This technique does
not retain the secrecy of the message; for the message to be secret, it must also be encrypted.

2.4.3 Implementation for ECR/POS software of RSA:
During audits the Tax Authorities will regenerate the hash and compare it with the hash derived
from the signature stored in the electronic journal by using the public key obtained through the

relevant certificate. The RSA signature must be generated and stored in the electronic journal
upon each completion of the sale.

The Tax Authorities generates the hash by using the defined data values stored in the electronic
journal. A match indicates that the data has not been altered by a third party without knowledge to

the private key.

The process of signing and verification is illustrated in the image below:
Signing Verification

Hash k
function 101100110101
Hash *

A\

il

Data
Encrypt hash L .
using the private Digitally signed data
key obtained \
from OCES
-
ﬁ 8111101101110 A\ |
AN Validation of
OCES Certificate Signature certificate
!, Incl. the public key authenticity (co —]
S —— - via the CA g
S OCES CA
Repository
Attach — 111101101110
to data -
- Signature
l Data Decrypt
using signer's

public key

o o
I
?
101100110101 — 101100110101

Digitally signhed data
Hash Hash

If the hashes are equal, the signature is valid.

2.4.4 Certificate requisition

The Digital Cash Register Act demands that the signed transactions are done using the keys validated and
delivered in the OCES certificate acquisition process (see 1.5 Acquiring the RSA keypair through OCES CA).
The certificate will provide information about the responsible signee and, among other data, contain the
public key used in the RSA signature. The OCES CA will host the necessary information to validate the
certificate, which can be requisitioned by the Danish Tax Authority on demand.

2.4.5 Technical requirements
IMPORTANT NOTE: The process of verifying the signature will not be possible if the technical
requirements are not met. This is because the recalculation of the SHA hash must be done with the
exact same values as done with the signing process.

When using the RSA algorithm (data encryption algorithm using the asymmetric key system, public
and private key), the following guidelines (in addition to general requirements) must be applied:

1. The systems vendor is not allowed to use any other keypair than the ones validated by
the OCES CA through the certification installation process (see Certificate Policy in
Ressource section below for further information).

2. The public key must result from an extraction from the private key in PEM format (base-64).
3. The systems vendor must ensure that the private key used to create the signature is their

unique knowledge and is properly protected in the software environment. See Key
Management for further guidelines.

The following table describes what data to be signed and their order (see also section 6.1

cashtransaction in Technical_description_Danish SAF-T format for Cash Register data):

Table 1: Mandatory transaction data

Element in Description of element Format and Examples
SAF-T Cash requirements
Register
signature Signature from previous receipt Base-64 signature_from
If no previous receipt the _previo
signature value must be set | us_receipt
to “0” — number zero
nr Transaction number. This must IdentificationString36 123456789
be a unique, sequential number
within a journal.
This will be the same as
the number stated on the
issued receipt
transID Transaction ID. Other unique IdentificationString36 11334455
internal, sequential ID used.
by the cash register system.
This can be the equivalent of
the element “nr”.
transType Transaction type. IdentificationString36 CASHSAL
Description of the code
MUST be declared in the
‘Basics’ table (basicType
11). See technical
description section 3.20.
transDate Date at which the transaction YYYY-MM-DD 2014-01-24
was performed. 2015-10-29
Do NOT use time zone or
combined date and time
format.

transTime Time at which the transaction hh:mm:ss 23:59:59
was performed.
Use ss=00 as default value if
no information of seconds
are available.

Same as within the SAF-T
export.

Do NOT use time zone or
combined date and time
format.

emplD Unique identification of the IdentificationString36 1003
employee who has performed,
the transaction (refers to the
emplD of the employee
element).

See section: 3.15 in technical
description.

transAmntin The amount involved in the Decimal Data Type: 1250.00
transaction, including VAT.
Numerical field with two
decimals.

Decimal separator “.”
(dot).

No thousand separators.
No leading or ending
spaces.

transAmntEx The amount involved in the Decimal Data Type: 1000.00
transaction, excluding VAT. Numerical field with two
decimals.

Decimal separator “.”
(dot).

No thousand separators.
No leading or ending
spaces.

registerID Unique id of the register. Identical | String100 123.45678-A
to registerID in section 4.3 in
technical description.

companyldent | The company’s danish 8-digit CVR | No leading or ending spaces | 12345678
number. This must be identical to
the number provided in section
3.1 «company\companyldent»

2.4.6 Practical example

All code examples are written and tested with OpenSSL and Cryptography in Python. We recommend
using the PKCS1v15 padding as this has proven to work more consistently across different code formats
but do accept PSS padding as well.

Signing of data:

1. Data to be signed:
Signatur_from_previous_receipt;transaction_data (see table 1)

Example:
apkUomoTd3dBJZ7EShaPAJd5kwPJ+zFGKkip6i8Vr5bp/917tQieCr0/DIfm5sTI0+0b9gbXqcVWP+ts6P+XulTpVCxBsyw
O4ElycZ7XdEWSDYfwoGCXvXwsllsZKHk1alFxzHb2CPGD44/8EThYkIh8vJOINckp3PoiL5N+Ljm6wBuN8qJ6ZSO8DhM)
CUUUIjruQnza/oTtdGgMQ1nD/YFLX40XYkcWbynGQYnvflUKS57PsMNSTW11XvdITPQbbm+DjP51TsatrRY799t+0z0
icqghLH44Z6s3UQgjWKTO5cFtNYkwHmMbEovulo7DXQB1v7/JPHUPicneHKhmtaDreFFTHWFjqwOJSZ/6xT40BBt+UUV
e4RL6fkhxpFNKoHC5urVtpYHopsBNIGSQms+BkSg9Mb2CsCNLvkIkbEWKCTCfigD7kijkSy0d7qzUNiJ/W+XiLftkFdabXe
7mVuSq97XDwI57pycodYehpVivv2fgrZGir7qw88elukTDch;123456789;11334455;CASHSAL;2014-01-
24;23:59:59;1003;1250.00;1000.00;123.45678-A;12345678

2. Hash data with SHA512 (this will return data in bytes):

message shabl2 = hashlib.shabl2 ((message

Encode with base64string and generate “signature”:
signature = base64d.bb6der (signature inbyte) .

Example signatur:
MT+gKDAh2wg1zk2uTtBrilkTHDgPhG5PVEjcWu065Uu28b07WKUUBmMbGLzUVhiEAMVGZI1FyR2elKDwP
Gc99hqvfzHFczQhCrRvI0020WMfO9FItU5qICzay9y40Rign9ee3Bqq6FCiUwDyqddObfz8 AQYFxFKOa+sWD
F7FfbEGOaXTbILIT10Ig+J0i613vwTsz69bjdvjtraD5KI2CTcfbCYYVO2FZHjwAvgBBqHS3jU30WcvDCw46xv7
dY1DPDgPUbb9p/zF3NArcnSP9Cwjs2T/ri6041s124L9CGd//abaDpBARcxgfHkOVcrkKTvNo19roXDxPn7Ham
iQ9fXgNUF3t0x5b7xX1Y3DIXqYz6c8HfaoH22kVHpg)gAJjADGBHTgArOxSV+kUBL2+uZ8baRJ/NM37+QzB8
A7JUFMYYVp/ATrdYZxswCG8Drgfk+rlLwbSfYjt6jahuOLQOZZLosRmN3RLiakvGbCmIVecbp/2RIOSVFgcTY+
Q7xw3e

How to verify the signature:

Mock certificate data for testing:

Certificate format: x.509 PEM

10

MIIGITCCBL2gAwIBAgIUKjnFzNdu5RItpr+EpFJIh7k2hEowQQYJKoZIhveNAQEK
MDSgDzANBglghkgBZQMEAgEFAKECMB0oGCSqGSIb3DQEBCDANBgIghkgBZQMEAGEF
AKIDAgEgMGsxLTArBgNVBAMMIJERIbiBEYW5za2UgU3RhdCBPQOVTIHVkc3RIZGVu
ZGUtQOEgMTETMBEGA1UECWWKVGVzdCAtIGNOAaTEYMBYGA1UECgWPRGVUIERhbnNr
ZSBTdGFOMQswCQYDVQQGEwJESzAeFwOyMzA5MjAWOTMOMTRaFwOyNjA5MTkwOTMO
MTNaMIGfMRYwWFAYDVQQDDA1TVEIMLUIQTCIURVNUMTcwNQYDVQQFEY5VSTpESy1P
Okc6ZTVIYmMMzN2EtNWFjNCOOMDJjLTk1NzgtNzY3Y21zZDk30DU4MSYwJAYDVQQK
DB1UZXNOb3JnYW5pc2F0aW9ulG5yLiAS5MzM3NzE2MzEXMBUGAL1UEYQWOTIRSREst
OTMzNzcxNjMxCzAIJBgNVBAYTAKRLMIIBojANBgkghkiGOWOBAQEFAAOCAY8AMIIB
igKCAYEAoh/HNOu+6XmFvtcGY5lo4BGefzbPtIbhPrgXTC98R+vHhBILx4GdKyOu
HMOoE5S5bEXEqa8ZYKP/OSF+fILOZeprNvMYQil9Xb01Y9V/BbVCcVImMCVNdszgMx
QhOQBOFKrLT100hZUNLf4go46Lzg2mRw2g4jlbTM3uC29vfiD/hzu79WRijyu21Q
aB8Y3QLyBwL6z0uyy5KDgzGtilQPLFpfDbcucGrUotkwiycViufaUEdd5PQUeAmQ
51Py+wHcQIHEMYPpCmCy9nCUUdHDFwp+yToqtMeXORUQu3bal2tqz4Ub6DtRRIrI
2nR8i0b1Gmo6YaVroghX1uGAEqUUDHpAE2TGOXxtdUGNSV/x9A6p/AKTZA2tTajTV
6bjGM8K220GOMANPgEWph+I9BI/ICTLovMG9001JEo5UUzxyomL9Yb1ANeVpRw/W
NTIXVEj1Wd4DTpg7HHChsmrCzaevnRYT4ThXRXzl05ms6RfRyqVDz06xJVXaV+ed
edjwvvXtAgMBAAGjggGGMIIBgjAMBENVHRMBAFSEAJAAMB8GA1UdIwQYMBaAFH80
n9IxmULidefXNXYuTQglbXZeMHsGCCsGAQUFBwWEBBG8wbTBDBggrBgEFBQcwAo0Y3
aHROcDovL2NhMS5jdGktZ292LmRrL29jZXMvaXNzdWIuZy8xL2NhY2VydC9pc3N1
aW5nLmNIcjAmBggrBgEFBQcwAYYaaHROcDovL2NhMS5jdGktZ292LmRrL29jc3Aw
IQYDVROgBBowGDAIBgYEAI96AQEWDAYKKoFQgSkBAQEDBzA7BggrBgEFBQCcBAWQY
MCOwWKwYIKwYBBQUHCwIwWHWYHBACL7EKBAjAUhhJodHRwczovL3VpZC5nb3YuZGsw
RQYDVROfBD4wPDA60DigNoYOaHROcDovL2NhMS5jdGktZ292LmRrL29jZXMvaXNz
dWIuZy8xL2NybC9pc3N1aW5nLmNybDAdBgNVHQ4EFgQUD6pFevOBC/FSoRzZnyjB
6cV3wikwDgYDVROPAQH/BAQDAgWgMEEGCSqGSIb3DQEBC]A00ASWDQYJYIZIAWUD
BAIBBQChHDAaBgkghkiGOwWOBAQgwDQYJYIZIAWUDBAIBBQCIAwIBIAOCAYEACMUR
Xivhc2m3CAWIJCO1LIAW+CmbNPXbcg3ovTTuqgpvp/6/2YyP9xu9VeerUI34Wndl+j
naaXTHxrszWQO+1TEVN/ph6dXu7tooONwVt+wunL8+PCBOULR8Z2L9fSChyExPql
04LheixLfRFNES67KT2Ny20vtRpHqVUDF3qwzpra08j2yVEbbhdv1sQ0Sp9pNyez
fpSZzYY216qDjOM5rZMdjeP65rzi8h3wWUQgJcscluxhvtR+RdHDOVX3X2qV/Zvb
tF7CvagAJsARNBIRr7kcHrhmdI7MFP6/JQ11zEXYhgiNnuMv4kQKNPkng5NHDn1d
YjittCgAyGKISIPrLhz)2hnS+ieVxhKLSaxBHxyJRYkgvySYe/ijr+35XzzW8lie
ARS5IYCt48WiqoJk7AviERie+XwaR0Mc8QRk7kal/6yR34Qaqv8lokeKjzCF84Bh9
F/ax1nePVCIxXVADF4sLR31V+bfQaq++RCn9BE3/YgWCdYgUusoFft5nzZv/Ui

7. Generate hash with SHA512 with same unsigned data as in step 1 “data to be signed” and step 2
“Hash data with SHA512”

Example (same as step 2):

Message sha512=
b'5#\xac\x8e\xbe\x11\xfc\x9e\x87\xc0\x1e\xe3V:\xbbl\xe6\x0b\x1d\xd8AT\r\xbc\xf3\xe8_?C_HT\xc6\x88\x92\x9a
\xc3\xddB\x96\xfb\xb1\xec\x7f\x8f.\xc7W_\xe2\xd3k[mK\xcff\x80\xf4\x84\x93 ?\xa4="

8. Use public key on signed data to verify hash:
public key.verify(
signature
message to sign shabl2

padding 715 ()
hashes.

11

9. The hash values are the same and the data integrity is confirmed.

2.4.7 Practical Python code example for signing.

(pfx path
pfx data = f.read()

pfx = OpenSSL.crypto.load pkcsl2 (pfx data, pfx password)

private key = serialization.load pem private key (
OpenSSL.crypto.dump privatekey (OpenSSL.crypto.FILETYPE PEM
pfx.get privatekey()) =
=default backend())

certificate = x509.load pem x509 certificate(
OpenSSL.crypto.dump certificate (OpenSSL.crypto.FILETYPE PEM
pfx.get certificate()) default backend())

public key = certificate.public key ()

message to sign =

message to sign shab5l2 = hashlib.sha512 ((message to sign
)) .digest ()

signature = private key.sign(message to sign shab512
padding.PKCS1v15 ()
hashes.SHA512 ())

public key.verify(
signature
message to sign shabl2
padding.PKCS1v15 ()
hashes.SHA512 ()

()

cryptography.exceptions.InvalidSignature:

()

2.4.8 Practical C code example for signing.

SHA512 CTX ctx;
SHA512 Init(&ctx);

SHA512 Update(&ctx, buffer, bytes);

SHA512 Update(&ctx, plainText, strlen(plainText));

digest[SHA512 DIGEST LENGTH];
SHA512 Final(digest, &ctx);

result = RSA sign(NID_sha512, digest, SHA512 DIGEST_LENGTH, buffer, &bytes,
rsa_privkey);

* base64EncodeOutput;
len = Base64Encode(buffer, bytes, &base64EncodeOutput);

3 Key Generation and Management
The objective of key management is to achieve a situation in which the private key or secret key
cannot be revealed or abused. Therefore, great responsibility rests with the software vendors to
protect these keys.

This section presents guidelines and best practices for key generation and management.

3.1 Responsibility of software vendor

The software vendor must do a risk assessment based on the circumstances they are facing in the
following:

- Protection of private/secret key used by the ECR/POS software available to their customers.
- Protection of private/secret key within the software vendor company premises.

The conclusions and actions taken must be documented and act as the basis for the management
of secret key(s).

The consequence of private/secret keys being compromised is that the software vendor must
contact the relevant CA responsible for managing the certificate to which the keypair was
generated for.

3.2 Distribution
The generated keys shall be transported (when necessary) using secure channels. The distribution of

the public key (asymmetric encryption using RSA) to the Danish Tax Authority is done utilizing the
OCES CA key distribution solution.

Sharing of secret keys with other parties must not be done, unless stated by an industry agreement
with the participation of the Danish Tax Authority. It is however permitted for the business owner
to use the system suppliers certified keypair for the signing process. Insofar such a transaction of
keys is performed internally within the system supplier or between the system supplier and the
customer (business owner), it must be carried out adhering to the OCES CA rules and regulations.

3.3 Storage

The basis of key management is to ensure that the keys are stored in a secure manner. What 13

constitutes a secure manner depends on how the environment for each cash register system is
structured.

Regardless of the environment and whether the key is stored internally or externally, the following
general protective measures should be considered:

e Developers must understand where cryptographic keys are stored within the application.
Understand what memory devices the keys are stored on.

e Limit the amount of time the key is held in plaintext form, for example in volatile memory.

e Keys should never be stored in plaintext format, and humans prevented from viewing it in
plaintext.

e Keys should be protected on both volatile and persistent memory, ideally processed within
secure cryptographic modules.

e Keys should be stored so that no other than the privileged persons get access to it in
plaintext form.

3.4 Accountability
Accountability involves the identification of those that have access to, or control of, cryptographic
keys throughout their lifecycles. This can be an effective tool to help prevent key compromises and
to reduce the impact of compromises once they are detected. Although it is preferred that no
humans are able to view keys, as a minimum, the key management system should account for all
individuals who are able to view plaintext cryptographic keys.

In addition, more sophisticated key-management systems may account for all individuals authorized
to access or control any cryptographic keys, whether in plaintext or cipher text form.

3.5 Compromising of key to third party
If a key is compromised, the cash register system no longer fulfils the requirements in the Cash
Register Systems Regulations. The supplier must, without undue delay, notify the CA of the OCES
certificate from which the keypair is generated, of this and rectify the deficiency or withdraw the
cash register system from the market, refer the certificate policy of the Danish Agency for Digital
Government (see section “4 Resources”).

4 Classic pitfalls regarding digital signature
In the following section, we introduce the typically identified pitfalls we observe in the implementation
and use of digital signatures.

4.1 Not utilizing the available signature script available on SKAT.dk.

Working with digital signatures and cryptography validation in general involves many variables and
uncertainties. Therefore, we recommend testing and verifying your signature algorithm with the available
script. This ensures that your algorithm corresponds to what is expected in the SAF-T format.

4.2 Consistency of the signature:
It is crucial to check that the data in both the database and the signature are identical. Errors can ochfur

where decimals or dates in the database differ from the signing data (in the SAF-T file) due to the length
of the decimals and dates. This can be avoided by ensuring that the signature is consistent throughout.
- We advise to print the data behind the signature in your dataset and compare it directly with
the data in your generated SAF-T file to validate that these corresponds.

Practical example:
For the digital signature expect the following format:

previous_signature;nr;transiD;transType;transDate;transTime;emplD;transAmntin;transAmntEx;registerl
D;companyldent

A typical error we see is discrepancy in the data signed vs. the data present in the SAF-T file, which is used
for validation.

Data signed in backend:
0;123456789;11334455;CASHSAL;2014-01-24;23.59.59;Admin;1250,00;100,00;123.45678-A;12345678

Data available in the SAF-T file:
0;123456789;11334455;CASHSAL;2014-01-24;23:59:59;1003;1250.00;100.00;123.45678-A;12345678

Although quite similar, the data signed has different values for emplD, transTime and transAmntin
transAmntEx. These need to be identical for us to validate the signature.

Rule of thumb is, that if you have used the signature script and gotten a ‘Valid’ or ‘It worked’, your signing
algorithm is correct. If you still receive signature errors in actual SAF-T files it typically is caused by
mistakes in signed data vs. data in the SAF-T as illustrated above.

4.3 Wrong format in the certificate

For us to validate the digital signatures provided in the SAF-T file, we must be able to read the OCES
certificate also provided. As stated in section 1.5.2, the full OCES3 certificate (without privateKey) is to be
provided in a PEM X.509 version.

4.4 Wrong type of certificate
To validate the certificate the certificate needs to be the correct type of certificate. If you are in doubt if
you have the right certificate, please see the guide below from MitID to get the correct type of certificate.

Link to guide:
https://www.mitid-erhverv.dk/support/vejledning/anvendelse/brugeradministrator/certifikater/bestil-et-
organisationscertifikat/

Please be aware that the certificate needs to be valid for the period that the transactions are signed. This
means that if you have a certificate valid from the month of May but transactions are signed in April with
this certificate we won’t be able to validate the signatures.

15

https://www.mitid-erhverv.dk/support/vejledning/anvendelse/brugeradministrator/certifikater/bestil-et-organisationscertifikat/
https://www.mitid-erhverv.dk/support/vejledning/anvendelse/brugeradministrator/certifikater/bestil-et-organisationscertifikat/

5 Resources

OCES-standarden — Digitaliseringsstyrelsen (Agency for Digital Government)

https://digst.dk/it-loesninger/nemid/om-loesningen/oces-standarden/

NETS Certificate Policy for OCES-Virksomhedscertifikater (v.5)
https://www.nemid.nu/dk-da/om-nemid/historien om nemid/oces-standarden/oces-
certifikatpolitikker/VOCES Certifikatpolitik v5.pdf

Agency for Digital Government - Certificate Policy
VOCES Certifikatpolitik V4 0 sep 09 Eng.doc (digst.dk)

16

https://digst.dk/it-loesninger/nemid/om-loesningen/oces-standarden/
https://www.nemid.nu/dk-da/om-nemid/historien_om_nemid/oces-standarden/oces-certifikatpolitikker/VOCES_Certifikatpolitik_v5.pdf
https://www.nemid.nu/dk-da/om-nemid/historien_om_nemid/oces-standarden/oces-certifikatpolitikker/VOCES_Certifikatpolitik_v5.pdf
https://digst.dk/media/19823/voces_certifikatpolitik_version_4_eng.pdf

